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Abstract

The large and rapidly growing number of engineered nanomaterials (ENMs) presents a challenge 

to assessing the potential occupational health risks. An initial database of 25 rodent studies 

including 1929 animals across various experimental designs and material types was constructed to 

identify materials that are similar with respect to their potency in eliciting neutrophilic pulmonary 

inflammation, a response relevant to workers. Doses were normalized across rodent species, strain, 

and sex as the estimated deposited particle mass dose per gram of lung. Doses associated with 

specific measures of pulmonary inflammation were estimated by modeling the continuous dose-

response relationships using benchmark dose modeling. Hierarchical clustering was used to 

identify similar materials. The 18 nanoscale and microscale particles were classified into four 

potency groups, which varied by factors of approximately two to 100. Benchmark particles 

microscale TiO2 and crystalline silica were in the lowest and highest potency groups, respectively. 

Random forest methods were used to identify the important physicochemical predictors of 

pulmonary toxicity, and group assignments were correctly predicted for five of six new ENMs. 

Proof-of-concept was demonstrated for this framework. More comprehensive data are needed for 

further development and validation for use in deriving categorical occupational exposure limits.
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1. Introduction

In this paper, a quantitative framework is described with potential application to the 

derivation of occupational exposure limits (OELs) for “new” nanomaterials which may have 

physicochemical property information but limited or insufficient dose-response data. This 

methodology is consistent with the 21st Century toxicology and risk assessment goals to 

increase the efficiency and utility of risk assessment for human health risk decision-making 

(NAS, 2007, 2017). This framework also contributes to risk assessment goals at NIOSH and 

in the nanotechnology research community to develop methodologies that utilize 

nanotoxicology and nanomaterials research data to develop occupational exposure limits 

(OELs) for the large and growing number of engineered nanomaterials (Gordon et al., 2014; 

Kuempel et al., 2006; Nel et al., 2013; Schulte et al., 2010). Standardized methodology is a 

major research need for harmonization of OELs for nanomaterials (ISO, 2016; Mihalache et 

al., 2017) as for OELs in general (Deveau et al., 2015). Categorical methods of data analysis 

for hazard and risk assessment, such as proposed in this framework, can provide more 

efficient use of data and support comparative potency, read-across, and other alternative 

methods (OECD, 2007, 2012, 2014; NAS, 2017; ECHA, 2017). In the absence of sufficient 

evidence to develop individual OELs for specific ENMs, categorical OELs could be 

developed and used as occupational exposure bands (OEBs) to inform exposure control 

decision-making in the workplace (Kuempel et al., 2012; ISO, 2016; NIOSH, 2017). This 

analysis provides progress towards this goal by providing an initial quantitative framework 

to categorize ENMs by hazard potency. Following further evaluation of this framework, 

including application to more comprehensive data, the next step will be to utilize the derived 

categorical potency estimates in standard risk assessment methods to derive categorical 

OELs or OEBs for ENMs.

A number of risk assessment frameworks for ENMs have been developed in recent years. In 

general, these frameworks apply standard risk assessment principles and practice to 

nanomaterials (OECD, 2012). The standard risk assessment paradigm has four main 

components: hazard assessment, exposure assessment, dose-response assessment, and risk 

characterization (NAS, 1983); an update of the framework reaffirmed those key elements 

and emphasized the role of problem formulation in identifying the risk assessment needs to 

evaluate the risk management options (NAS, 2009). The current analysis focuses on dose-

response assessment of acute pulmonary inflammation data in rodents across a set of 

nanoscale and microscale particles in various experimental designs. As more data become 

available, this framework could be evaluated for other endpoints, dose metrics, and particle 

characteristics.

Other frameworks have proposed grouping ENMs based on hazard and exposure potential 

(Arts et al., 2015, 2016; Bos et al., 2015; Braakhuis et al., 2016; Cohen et al., 2013; Gebel et 

al., 2014; Godwin et al., 2015; Oomen et al., 2015; Oosterwijk et al., 2016; Stone et al., 

2014; Walser and Studer, 2015), although many of these have not been tested with 

quantitative data. Case study data have been used with some of these frameworks (Arts et 

al., 2016; Gkika et al., 2017; Grieger et al., 2017). Exposure scenarios along the ENM 

“lifecyle” (production to disposal) are included in some of the conceptual frameworks (Arts 

et al., 2015; Environmental Defense and Dupont, 2007; Shatkin, 2013). Weight of evidence 
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and decision analysis methods have been proposed in other analysis frameworks (Hristozov 

et al., 2014; Zuin et al., 2011). Several quantitative structure-activity relationship (QSAR) 

models have been developed, which describe the important factors influencing the toxicity 

(Munro et al., 1996; Burello and Worth, 2011; Gernand and Casman, 2014, 2016) and allow 

for hazard grouping and ranking (Liu et al., 2011, 2013; Oh et al., 2016; Zhang et al., 2012); 

however, these models have not thus far been used in human health risk assessment. A 

recent quantitative framework proposes a human health risk prioritization based on a margin 

of exposure method (i.e., estimating the ratio between animal effect level and human 

exposure) (Hristozov et al., 2016). Still lacking in these currently available frameworks is an 

integrated methodology to utilize quantitative dose-response data to group ENMs by hazard 

potency using biological responses and dose metrics that allow for the estimation of human-

equivalent concentration (HEC) and development of categorical OELs for ENMs. The 

current analysis provides progress towards filling this gap in available methods for OEL 

derivation of a large set of diverse materials.

The objective of this paper is to demonstrate the development and evaluation of a 

quantitative clustering framework to support evidence-based occupational safety and health 

decision-making. The overall framework is shown in Fig. 1. This framework utilizes 

standard methodologies that depend on the amount of data available. If sufficient data are 

available for a given nanomaterial, an individual OEL can be derived. Such materials can 

serve as benchmark materials to provide a reference point for interpreting results in 

experiments with new materials. As shown in the current analysis, empirical dose-response 

data are used to derive benchmark dose estimates for individual experiments and to develop 

potency-based groups. A predictive model to estimate the potency-based group using 

physicochemical information is developed. Physicochemical information of new materials is 

then used to estimate their group assignments. Acute in vivo dose-response data in the lungs 

of rodents are used in this example. In the future, in vitro and long-term in vivo data in 

animals or humans (including biomarker data) could be added to extend and validate the 

predictive models in the framework (Fig. 1). This strategy is consistent with current 

guidance on the use of alternative testing strategies in the risk assessment of manufactured 

nanomaterials, and the need to develop methods for grouping materials by their properties 

and predicting hazards of new materials (OECD, 2016; NAS, 2017).

2. Methods

2.1. Data analysis plan

The main steps in the data analysis are shown in Fig. 2. A database of nanoscale and 

microscale particulate materials was constructed to describe the dose-response relationships 

for pulmonary inflammation in rodents and the physicochemical properties of those 

materials. Inflammation potency was estimated using benchmark dose modeling, and 

materials were grouped using hierarchical clustering. Potency is defined in this analysis as 

the estimated mass deposited lung dose associated with a specific inflammatory response in 

the lungs (Section 2.3). These responses are considered to be biologically significant and 

relevant to workers (as described in Section 2.3). A classification random forest model was 

developed to identify the physicochemical properties that were predictive of the hazard 
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potency group. The model was then tested on a separate dataset of new materials, using only 

the physicochemical information to predict the hazard potency group and evaluating the 

predictions against potency estimates derived from the dose-response data.

2.2. Database construction (training: NIOSH/CIIT/ENPRA, testing: NanoGo)

Individual rodent study data on nanoscale and microscale particles from a variety of material 

types were obtained ad hoc from studies identified through research collaborations and from 

the published literature. Files for 25 in vivo rodent studies comprising of data for 1899 

unique animals (from 1929 records) were graciously provided by researchers from NIOSH 

(Porter et al., 2001, 2004, 2013; Roberts et al., 2013; Sager et al., 2013; Xia et al., 2011); 

CIIT (renamed Hamner Institute) (Bermudez et al., 2002, 2004); and the European 

Framework 7 Programme on Engineered Nano-Particle Risk Assessment (ENPRA) to which 

NIOSH was a research partner (ENPRA, 2013). Exposure-response information was 

available for the individual rodents, and experimental design properties were included (e.g. 

post-exposure duration, method of exposure).

The duration of exposure varied across materials in this analysis, from single bolus 

administration (IT or PA) to subchronic inhalation (up to 116 days) (Table 1). The estimated 

total deposited mass dose of particles in the lungs provides a normalized dose metric over 

time. It is similar in concept to “Haber’s rule” of C × T = K, which assumes that a specific 

adverse effect (K) would be associated with the cumulative exposure (concentration × time). 

This dose metric does not account for particle clearance from the lungs, but is considered to 

be a reasonable assumption in this analysis. Normal clearance of poorly-soluble particles 

from the lungs is relatively slow (e.g., clearance half-time of 60–90 days in rats) (Pauluhn, 

2014); and the subchronic data included in this analysis were poorly-soluble particles (TiO2 

and crystalline silica). In the acute studies, clearance would be minimal at 0–1 day post-

exposure.

Some physicochemical information about the materials was provided in the files, but most of 

this information was gleaned from the resulting publications of the researchers. Six 

chemicals of various forms were studied: iron oxide (Fe3O4) (nano-scale), silver (Ag) (nano-

scale), multi-walled carbon nanotubes (MWCNT), crystalline silica (micro-scale), titanium 

dioxide (TiO2) (nano- and micro-scale), and zinc oxide (ZnO) (nano-scale). The 

experimental designs of these studies varied by exposure route, rodent species and strain, 

and exposure and post-exposure duration. A majority of the studies utilized intratracheal 

instillation (IT) as the exposure route, while the remainder used inhalation (Inh) or 

pharyngeal aspiration (PA). Various strains and both sexes of rats (male Sprague-Dawley, 

male and female F344) and mice (Female C57BL/6N, Male C57BL/6J, Female C57BL/6-

Apoetm1) were used across the studies. Acute pulmonary response data (0–1 d post-

exposure) were available for most studies, while some studies reported pulmonary response 

at the end of repeated inhalation exposure (also 0–1 d post-exposure). A summary of these 

experimental characteristics for the various types of the materials is shown in Table 1. This 

database (henceforth NIOSH/CIIT/ENPRA) was used for training the predictive models.

A separate database of in vivo rodent studies of similar experimental design was constructed 

from the U.S. National Institute for Environmental Health Studies (NIEHS) NanoGo 
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Consortium (Bonner et al., 2013). This inter-laboratory research program studied three 

forms each of nanoscale titanium dioxide (TiO2) and multiwalled carbon nanotubes in 258 

unique rats (male Sprague-Dawley, male F344) and 177 mice (male C57BL/6) for a total of 

435 unique rodents. Physicochemical property information for these materials was provided 

in Xia et al. (2013), which included in vitro studies of the same nanomaterials studied in 
vivo (Bonner et al., 2013). This database (henceforth NanoGo) was used for validating the 

predictive framework as these data were received after the NIOSH/CIIT/ENPRA database 

had been created. A deposited dose metric was created for these data also in order to be 

commensurate with the NIOSH/CIIT/ENPRA database. A description of the experimental 

design characteristics of the NanoGo studies is provided in the Supplementary Material 

(Tables S-6).

The response of interest was the proportion of polymorphonuclear leukocyte cells (PMNs) 

(a.k.a. neutrophils), which is a common measure of pulmonary inflammation. This response 

is often reported in particle toxicology studies of the lungs; other endpoints include lactate 

dehydrogenase (LDH) and fibrosis severity scores. If the proportion of PMNs was not 

reported in the file, it was calculated from the primary data (ratio of PMN count to total cell 

count). Toxicology studies often report the PMN percentage, which is simply the proportion 

× 100. PMN % has also been used to compare results between studies since differences in 

the methods used for bronchoalveolar lavage fluid (BALF) and cell counting may result in 

different total cell counts (Bonner et al., 2013). In order to compare the lung doses across the 

various routes of exposure, a deposited dose (in micrograms) metric was created. The 

measured particle mass lung doses were used when reported. For studies using IT or PA that 

did not report the actual lung dose, the deposited mass dose was estimated to be equivalent 

to the administered mass dose. For inhalation studies that did not report the measured lung 

doses, the total deposited mass dose was estimated as the product of the airborne exposure 

concentration × exposure duration × minute ventilation × pulmonary (alveolar) deposition 

fraction. The exposure concentration and duration were as reported in the study. The minute 

ventilation was derived from allometric equations using body weight (U.S. EPA, 1994). The 

deposition fractions in rats were estimated from the Multiple-Path Particle Dosimetry 

(MPPD) model, v. 2.90.1 (ARA, 2011); input values included the particle aerodynamic 

diameter and geometric standard deviation. In mice, the pulmonary deposition fractions 

were estimated from Raabe et al. (1988), which is one of the datasets used in testing the 

mouse lower respiratory tract deposition model (Asgharian et al., 2014). The mouse model 

became available in MPPD v. 3.04 [available at: www.ara.com/products/mppd.htm].

Because both mice and rats were used in the toxicology studies, species normalization was 

required. To account for the differences in size of the animals, the deposited dose was 

normalized by the wet lung weight of the species. For rats, it was assumed that a typical 

control lung weight was 0.9 g for F344, 1.3 g for SD; for mice, a typical control lung weight 

was 0.15 g. These values were based on data from the compiled database, where available, 

and also from the literature for rodents of the same species, strain, sex and age (Kobayashi et 

al., 2009; NIOSH, 2013; Porter et al., 2001). The normalized dose metric was the 

micrograms deposited dose per gram lung (μg/g lung); normalizing particle dose per g lung 

has been used in other analyses of rodent data (NIOSH, 2011; Schmid and Stoeger, 2016).
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During the exploratory data analysis stage to learn about factors that may need to be 

considered when estimating potency, a random forest regression model found that of the 

experimental factors, post-exposure duration, (normalized) deposited dose, and material 

form were most predictive of the PMN proportion across all studies (Fig. 3). Additionally, 

animal sex, strain, species and exposure route are less predictive, suggesting that the 

deposited dose metric is working as intended by compensating for these experimental design 

differences. Variable importance of a particular factor is estimated by measuring the change 

in mean squared error (MSE), a measure of predictive accuracy, when other values of that 

factor are permuted across the dataset. Thus, if permuting the values of a factor has a large 

negative impact on predictions, it is an important predictor and receives a high variable 

importance score.

Initial efforts to model the post-exposure – dose – response surfaces were unfavorable 

leading to the decision to stratify the NIOSH/CIIT/ENPRA database by post-exposure 

duration. Four strata were created: 0–3 days; 7–14 days; 28–60 days; 91 days to 1 year. 

These strata reflect typical toxicology study designs. A majority of the data and studies were 

contained in the 0–3 days stratum, which is the focus of this analysis (Table 2).

2.3. Benchmark dose modeling and potency estimation

Dose-response modeling was utilized to quantify the potency of a given material, where 

potency is a benchmark dose (BMD) (Crump, 1984, 2002). The total deposited lung dose 

(normalized per g lung) is the dose metric used in these analysis. Neutrophilic pulmonary 

inflammation is the benchmark response (BMR) used in these analyses, and was measured 

in the rodent studies as increased proportion of PMNs in BALF. The specific BMRs 

evaluated were either an added 4% PMNs over background (i.e., in the unexposed control 

animals) or a total of 10% PMNs in BALF, based on biological evidence cited below. Since 

potency is defined here as the estimated mass deposited lung dose associated with 

pulmonary inflammation, the lower that dose (i.e., BMD), the greater the potency of the 

material.

These BMRs were selected as being biologically relevant responses in both rodents and 

humans (as discussed in NIOSH, 2011). In rats, a response of approximately 4% PMNs in 

BALF has been associated with particle lung doses at or near overloading of lung clearance 

in rats exposed to poorly soluble particles (Muhle et al., 1991; Tran et al., 1999; Pauluhn, 

2012). Overloading results in a dose-dependent increase in the particle retention in the lungs 

(Morrow, 1988; Elder et al., 2005; Pauluhn, 2011) and the development of persistent 

pulmonary inflammation, fibrosis, and lung cancer in rats (Muhle et al., 1991; ILSI, 2000; 

IARC, 2010). Dose metrics that are most predictive of overloading across microscale and 

nanoscale particle sizes include particle volume (Pauluhn, 2011, 2014) and particle surface 

area (Oberdörster et al., 1994; Tran et al., 2000; Morfeld et al., 2015). The background 

percentage of PMNs in control rats in long-term studies is generally low (<1%), while in the 

acute studies, higher background % PMNs were observed in animals treated with vehicle 

control (e.g., Bonner et al., 2013). In humans, approximately 4% PMNs in BALF was 

associated with respiratory impairment in workers in dusty jobs (Rom, 1991); and 10% 

PMNs in BALF is considered to be clinically abnormal (Crystal et al., 1981; Martin et al., 
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1985). This analysis focuses on results for the added 4% PMN response, and detailed results 

for both the added 4% PMN response and the total 10% PMN response are provided in the 

Supplemental Materials (Tables S-1 to S-5). The selection of biologically significant BMRs 

is relevant for risk assessment (U.S. EPA, 2012); these values would not necessarily be 

statistically significant, which depends on the variability in the observed dose-response 

relationship. The specific BMR used (i.e., an added 4% PMNs or a total of 10% PMNs) 

influenced the number of rodent studies with sufficient dose-response data for BMD 

estimation in this analysis (as explained further in Results).

Benchmark dose estimation for each of the dose-response relationships was performed 

individually using Stochastic Kriging (SK), which is a flexible modeling method suited for 

handling the non-linear, heteroskedastic dose-response relationships often seen in toxicology 

studies (Wang et al., 2014). A wide range of continuous dose-response relationships can be 

modeled using SK, and the capability to automate the modeling process facilitated the 

estimation of BMDs from multiple studies, although it still requires a specification of the 

covariance function. The popular Gaussian covariance function was first used, which should 

handle all of the two dimensional dose-response shapes and generally creates a smooth 

curve. However, the model curve fit to the data was not restricted to biologically-relevant 

shapes and included shapes such as sinusoidal or non-monotonic. If the visual fit was 

inadequate, the General Exponential covariance function was used, which generally creates a 

non-smooth curve (e.g. piecewise linear). Only dose-response relationships with statistically 

significant differences in mean response across dose groups were modeled, and this 

characteristic was investigated via ANOVA (results not shown). Levene’s Homogeneity of 

Variance test was used prior to ANOVA to check the constant variance assumption, and a log 

transformation of the response was used in cases exhibiting heteroscedasticity. Decisions 

were made in these two tests using a 5% level of significance.

Dose-response modeling was initially completed using the U.S. EPA Benchmark Dose 

Software (BMDS), version 2.6 (U.S. EPA, 2015), which offers the choice of several 

parametric model forms to fit to a single relationship. BMD estimates from BMDS were 

similar to those from SK (Wang et al., 2014), however modeling many relationships is more 

time-consuming with the basic BMDS. Variability in the dose-response data in an 

experiment can result in uncertainty in the estimated potencies; thus, the 95% one-sided 

confidence limit estimate of the BMD (i.e., BMDL) is calculated in the U.S. EPA BMDS 

and the SK modeling to provide an estimate of that uncertainty. The BMDL estimate 

provides 95% confidence that the true BMD is not lower than the BMDL. The BMDL 

estimates from SK tended to be higher than those from BMDS, indicating higher accuracy 

for a given confidence level. As a result, BMDs from SK modeling were chosen to represent 

the potency of the nanoscale or microscale particles. Other published software that allow for 

the fitting of several BMD model forms to numerous dose-response relationships in 

succession (Wignall et al., 2014; Shao and Shapiro, 2016) may be useful considerations for 

future investigations.
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2.4. Grouping materials by potency via hierarchical clustering

Once potency estimates are obtained for each of the dose-response relationships in the 0–3 

day stratum, similarly behaving materials are identified by comparing those potency 

estimates. Materials with similar potency estimates are assumed to behave similarly with 

respect to pulmonary inflammation. Hierarchical clustering was used to create four groups 

of materials with similar potency estimates. Four groups were chosen to potentially reflect 

the four broad categories that have been proposed for ENMs based on the biological mode of 

action and physicochemical properties (Poorly Soluble Low Toxicity, Soluble, High Aspect 

Ratio, Highly Toxic) (BSI, 2007; Kuempel et al., 2012; BAuA, 2013; Arts et al., 2016). The 

grouping process involves agglomerative clustering in which each potency estimate first 

begins as its own cluster. The Euclidean distances (differences) between potency estimates 

are calculated, and potency estimates (or clusters) nearest to one another are then combined 

into a set of new clusters. This process repeats until all potency estimates are represented by 

four clusters. The terms cluster and group are used interchangeably. This process creates 

groups with descriptively different potency estimates as opposed to statistically different. 

The BMDs are the best estimates of potency and so were used when creating the groups of 

materials with similar potencies. Variability in the experimental dose-response data was not 

considered in creating the groups; however, variability will be taken into account later by 

evaluating the distribution of the BMDL estimates within the final groups. BMDL estimates 

are used as the point of departure (POD) in risk assessment to estimate a safe dose in 

humans (U.S. EPA, 2012) (Section 4.2).

2.5. Random forest to predict potency group

In order to classify a new material into a potency cluster using that new material’s 

physicochemical properties, a classification random forest model was developed. Note that 

this is not the same random forest model used in the exploratory data analysis stage (Fig. 3), 

which was a regression model for identifying experimental design factors that are important 

in predicting PMN proportion. The classification random forest described next seeks to 

predict the potency group (1, 2, 3, or 4) of a material using only the available 

physicochemical property information as predictors. Due to the limited number of materials 

with a potency cluster label and numerous but sparse physicochemical properties, traditional 

modeling schemes are not well suited to describe the physicochemical property-cluster 

space. A non-parametric solution is a classification tree (Breiman et al., 1984); however, a 

single tree can tend to over-fit the data and have a large amount of variability in its 

predictions. A classification random forest is a collection of many classification trees that 

has improved predictive accuracy (Breiman, 2001). The “random” namesake is due to two 

characteristics: a tree is constructed using a random bootstrap sample of the data; and a 

random subset of all predictor variables are considered for every branch in the tree. This 

process is repeated many times, creating many trees, hence a forest. The result is a collection 

of many decorrelated trees, each of which can provide different information about the 

relationship of interest. For a given new material, each tree in the forest casts a vote for a 

potency group, with the final group prediction being the potency group that received a 

majority of the votes.
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Default options were used when constructing the random forest: 500 trees are created, and 

 predictors were considered at each branch in the tree. Since many physicochemical 

properties have missing values, distinct values (−99 if quantitative; “N/A” if qualitative) 

were used to indicate missingness. Physicochemical properties with missing values for all 

materials were excluded from the modeling process (Fig. S-1). An examination of pairwise 

correlation estimates was used to ensure that few, if any, highly correlated physicochemical 

properties were included in the model, as this can lead to a preference of correlated 

predictors when the classification trees are created (Strobl et al., 2008).

2.6. Evaluation of model

The six material forms in the NanoGo database, five of which were not used in the model 

development (anatase/rutile nanospheres are the same type of material used in Bermudez et 

al., 2004), were considered to be “new materials” and were used to evaluate the random 

forest models. Using the physicochemical properties of these new materials, a potency 

cluster was predicted by the random forest model. Pulmonary inflammation potencies were 

estimated by SK from the individual dose-response data by lab and material. The median 

potency estimate for each material was used to identify the nearest potency cluster to which 

that the material would be assigned, and was then used as a comparison to the predicted 

cluster (Fig. 4).

2.7. Software

Data file formatting, database creation, and tests for differences in mean response were 

completed using SAS software version 9.3. Exploratory data analyses, hierarchical 

clustering, and random forest modeling (randomForest package) completed using R 3.3.2 (R 

Core Team, 2014) within the RStudio wrapper (1.0.44). Stochastic Kriging was completed 

using MATLAB R2016a (MATLAB, 2016).

3. Results

3.1. Analyzed data

From the initial 1899 unique rodents, 844 distinct rodents with a measured response were 

analyzed across 32 dose-response relationships (a combination of material form and post-

exposure duration within each study) from the 22 studies with post-exposure durations 

between 0 and 3 days:

• 1929 observations for 1899 unique animals

○ 1557 unique animals with a measured PMN response

■ 844 unique animals with a measured PMN response after 0–3 

days post-exposure

3.2. Potency estimation and grouping

Of the 32 relationships, 18 were found to have a statistically significant difference in mean 

response across the dose groups, and Stochastic Kriging was able to estimate a BMD and 

BMDL for each of those 18 relationships. These potency estimates ranged from 2.1 μg/g 
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lung to 2489.6 μg/g lung. The 14 relationships that were not estimable (e.g., no statistically 

significant difference in mean response) included the TiO2 nanospheres (Porter et al., 2013), 

all nano-scale silver (Roberts et al., 2013; ENPRA, 2013), and various forms of MWCNT, 

TiO2 and ZnO (ENPRA, 2013). For the absolute 10% PMN response, BMDs were not 

estimable in an additional six cases as extrapolation would be required due to either a high 

background response or a low response at the highest dose. Hierarchical clustering created 

four separate groups of materials with similar potencies, with a majority of materials 

belonging to the first and most potent group. The microscale TiO2 was the sole member of 

the fourth and least potent group. As shown in Fig. 5, the groups are descriptively, and not 

statistically significantly, different as the variability in the potency estimates were not used 

when creating the groups (Section 2.4).

The potency estimates within each group are summarized by the minimum, median, and 

maximum BMD values; uncertainty in the BMD estimates are summarized by the minimum 

and the 5th percentile BMDL estimates within each group (Table 3). Based on the median 

BMD estimates, the potency estimates of materials within the first group vary by a factor of 

about 60; the Group 2 materials are about nine times less potent than those in Group 1; the 

Group 3 material is roughly half as potent as the materials in Group 2; and the Group 4 

material is about six times less potent than the material in Group 3 (Table 3).

Within one material type, TiO2 potency depended on particle size and shape (Fig. 5). 

Microscale (fine) TiO2 was the least potent in eliciting pulmonary inflammation (Group 4); 

nanoscale (ultrafine) TiO2 was about six times more potent (Group 3); while TiO2 nanobelts 

were the most potent (Group 1). Within Group 1, short nanobelts were less potent than long 

nanobelts. Three types of ZnO were the most potent materials within Group 1 (Fig. 5). The 

various types of MWCNTs had varied potencies within Groups 1 and 2. The potency of 

short and long MWCNT seemed to depend more on the mouse strain than on the shape; and 

the C57BL/6-Apoetm1 mice appeared less sensitive to either short or long MWCNT (Group 

2) than were the C57BL/6N mice for the same MWCNT types (Group 1). However, the 

dose-response associations for the C57BL/6-Apoetm1 mice were linear, i.e. responses were 

measured for the control group and one exposed group. As a result, the BMD estimates for 

the C57BL/6-Apoetm1 mice were higher than those for the C57BL/6N mice where more 

exposure groups were available and nonlinear relationships were observed in the data, as the 

steepest part of the nonlinear curve reached the BMR at an earlier dose than that of the linear 

model. Carboxylated or bare MWCNT in C57BL/6J mice were also in Group 1. Microscale 

crystalline silica (Min-U-Sil®) was in the highest potency group (Group 1).

In this framework, a new material is predicted to belong to one of the four groups. In order 

to derive a potency estimate for that new material, a BMDL from the other materials within 

that group is used as an estimate for the effect level of the new material. One option is to use 

the minimum BMDL, but this may be affected by an unusually potent material within a 

given group, or a material with a high degree of variability in the experimental data; so an 

alternative is to use the 5th percentile BMDL. A table of the individual potency estimates is 

provided in the Supplemental Materials (Tables S-1).
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3.3. Training the random forest model

A classification random forest model was trained using the potency group labels and 

physicochemical properties of these 18 materials. Seventeen physicochemical properties 

were used during the development of the classification random forest model. Metrics related 

to particle size – such as density, surface area, and diameter – appeared to be most predictive 

of the potency group, while properties such as presence of contaminants or modification 

types were less predictive (Fig. 6). These estimates of variable importance should be 

interpreted with caution due to the small number of materials used to build the model, as 

well as the paucity of information contained within the seventeen physicochemical 

properties. If more information were available, or if other properties were considered, these 

estimates of importance would likely change. The material (e.g. TiO2 or MWCNT) is a 

somewhat important variable. If a new material is a type that was not present in the training 

data, this covariate could not be used. Thus, a training dataset should cover as many 

materials as possible for a reliable and predictive model.

3.4. Testing the random forest model

The random forest model was evaluated using the NanoGo data. Each of the NanoGo 

materials was predicted to belong to Group 1, the most potent cluster, by the random forest 

model based on their physicochemical properties (Table 4). Chen et al. (2004) have 

investigated the behavior of random forests when groups are unbalanced, particularly that 

the largest class tends to receive the most votes, and provide alternatives to improve the 

predictive accuracy for the minority classes, but these methods were not implemented here. 

Misclassification of a new material as belonging to a lower potency group could have 

serious practical implications and the current method appears to be conservative in that 

sense. Using Stochastic Kriging, a typical potency estimate was found for each of the 

NanoGo materials by taking the median of the potency estimates across laboratories, where 

there were up to six potency estimates per material. This median potency estimate was then 

compared to the four potency groups described in Table 3, and the material was assigned to 

the nearest potency group. The median potency estimate and nearest potency group (Actual 

Group) are shown in Table 4. For five of the six materials, the group assignment using the 

dose-response information matched the predicted group assignment using only the 

physicochemical properties. An exception was the anatase nanosphere material, which was 

predicted to belong to a more potent cluster (Group 1) than the potency cluster identified by 

the dose-response information (Group 2). However, this may be explained by the anatase 

nanosphere material having only one potency estimate out of the six labs, whereas each of 

the other materials had at least three estimates of potency, and those estimates tended to vary 

widely. A summary of the NanoGo potency estimates can be found in the Supplemental 

Materials (Tables S-2).

4. Discussion

4.1. Overview of the framework

In this study, we illustrate a quantitative framework to evaluate the hazard potency across a 

set of nanomaterials and use physicochemical property data to predict the hazard potency of 

other nanomaterials. This is a proof-of-concept evaluation. More comprehensive data are 
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needed to further evaluate this framework across a larger set of materials, dose metrics, and 

response endpoints. The grouping framework described here can utilize information from 

data-rich materials to estimate the hazard potency of untested materials with similar 

properties. Ultimately, the group-based BMDL estimates could be used as the PODs in 

standard risk assessment methods to derive categorical OELs (Fig. 1).

The current analyses use dose-response data in rodent studies to predict pulmonary 

inflammation hazard potency groups. The results show that this framework was useful in 

identifying important physicochemical properties (Fig. 6), which have also been shown in a 

number of studies to predict pulmonary inflammation and related pulmonary responses 

(Monteiller et al., 2007; Donaldson et al., 2008; Rushton et al., 2010; Pauluhn, 2011; Porter 

et al., 2013; Gernand and Casman, 2014). Several standard modeling methods are utilized in 

this framework to develop hazard potency groups and then to predict the group for a new 

ENM based on physicochemical properties only. We believe that this is a new contribution to 

the current scientific literature. The set of methods utilized in this framework is unique 

compared to currently published frameworks by having the ability to provide quantitative, 

group-based BMD and BMDL estimates, which could serve as “points of departure” to link 

to standard risk assessment and OEL derivation methods.

Recent publications which use some of the same methods include Gernand and Casman 

(2014), who used a random forest model to identify the important physicochemical 

properties associated with pulmonary toxicity of carbon nanotubes. Oosterwijk et al. (2016) 

describe a conceptual framework using lung dosimetry models to extrapolate rodent 

pulmonary responses to humans. Hristozov et al. (2016) used some of the same data 

(ENPRA) to estimate BMDLs in rodents as IT mass lung doses, then estimated inhalation 

BMDLs by assuming that the instilled bolus spreads over one volume of breath. The worker-

equivalent estimates of these single-day exposures were used in a margin-of-exposure 

analysis based on model-predicted occupational exposures. Pauluhn (2011, 2014) developed 

decision criteria and a model for one specific category of particles (low solubility and low 

toxicity), for which NOAELs for the respirable particle volume associated with rat lung 

clearance overloading is estimated based on the particle density, ventilation rate, and 

deposition fraction; OELs would be derived after application of adjustment factors.

Most of the nanotoxicology studies to date are acute in vivo or in vitro studies, and this 

framework provides a systematic method to utilize these data in estimating hazard potency. 

A growing number of studies have shown concordance between in vitro and acute in vivo 
biomarkers for pulmonary inflammation or fibrosis following exposure to engineered 

nanomaterials (Donaldson et al., 2008; Labib et al., 2016; Monteiller et al., 2007; Rushton et 

al., 2010; Wang et al., 2015; Wiemann et al., 2016; Zhang et al., 2012). However, these 

studies have generally not been evaluated for their utility in risk assessment.

Pulmonary inflammation is a well-studied mechanism in the development of chronic lung 

diseases associated with occupational exposure to respirable particles, including nanoscale 

and micro-scale particles (IARC, 2010; NIOSH, 2008, 2011). Pulmonary inflammation is 

clinically relevant in humans. Some of the materials in this analysis (including TiO2 and 

crystalline silica) have been studied in subchronic or chronic in vivo studies in rodents and 
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in workers and therefore serve as benchmark materials (Kuempel et al., 2012), providing 

linkages between early and later biological responses for further predictive modeling.

Although the data available for this initial analysis were limited, the findings were consistent 

with what is known from the literature. The least potent material tested was microscale (fine) 

TiO2 (Group 4), followed in Group 3 by nanoscale (ultrafine) TiO2 – which scaled by the 

total particle surface area dose as previously observed (NIOSH, 2011). Microscale 

crystalline silica was grouped in the most potent cluster (Group 1). A nano-scale equivalent 

of silica was not available for comparison. All of the other nanoscale metal oxide or 

carbonaceous nanomaterials were in the higher potency Groups 1 or 2 (Fig. 5). Fine and 

ultrafine TiO2 and crystalline silica, which are relatively well-studied materials, are useful 

benchmark materials (or negative and positive controls, respectively) for comparison to the 

lung inflammation potency of ENMs. Although measurements of solubility were not 

available in these data, ZnO is known to be soluble and was the most potent in eliciting acute 

pulmonary inflammation. These findings are generally consistent with the four a priori 
categories of particles (Poorly Soluble Low Toxicity, Soluble, High Aspect Ratio, Highly 

Toxic) (Section 2.4). Further grouping or subgrouping of these initial categories may be 

useful to explore specific models where available (e.g., mechanistic models for metal oxides 

pertaining to reactivity, protein adsorption, and cell membrane adhesion) (Burello, 2013). 

This framework could be useful in developing categorical OELs or OEBs for hazard and 

control banding, which typically include four or five order-of-magnitude bands (Naumann et 

al., 1996; ISO, 2016; NIOSH, 2017).

4.2. Evaluation of the data and methods

A number of challenges were encountered in the development of this evidence-based 

framework. First, the toxicology data that were available for these analyses are 

heterogeneous in several experimental variables, including method of exposure, species/

strain/sex, duration of exposure, and biological response measures. Differences in BAL and 

PMN counting methods across laboratory were addressed by using the PMN proportion 

response (as reported in Bonner et al., (2013)). Heterogeneity in the method of exposure and 

the animal species/stain/sex are addressed by normalizing the dose as particle mass per mass 

of lung tissue (μg/g). It is relevant to note that this dose metric appears to account for these 

differences at least to some extent given that the estimated deposited dose is an important 

predictor of pulmonary inflammation (PMN proportion), while strain, sex, species, and 

method of exposure do not appear to have much influence on the response (Fig. 3).

Evaluation of other dose metrics would be useful in future investigations with more 

comprehensive data. For example, particle surface area dose was shown to be the best 

predictor of acute pulmonary inflammation (as % PMN) in rats and mice exposed by IT to 

various types of nanoparticles (Schmid and Stoeger, 2016); and particle volume dose has 

been used to predict the NOAEL for overloading of pulmonary clearance in rats exposed to 

various types of poorly-soluble particles (Pauluhn, 2011, 2014). Information on in vivo 
dissolution of particles and species-specific clearance rates would be useful in future 

analyses, especially with chronic data of various types of materials. Dose rate has been 

shown to influence overloading and acute pulmonary inflammatory responses in rats, with 
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greater inflammation at a high dose rate compared to a low dose rate (Baisch et al., 2014). 

The BMR of an added 4% PMN in this study is similar to that associated with the initiation 

of overloading and so is biologically relevant without being associated with high lung doses.

Post-exposure duration was shown to be an important variable influencing pulmonary 

inflammation (Fig. 3). Early attempts to model the complex nonlinear post-exposure 

duration - dose-response surfaces were not successful due to variability, and so the data were 

stratified by post-exposure duration (Section 2.2). Post-exposure duration data provide 

information on the resolution or persistence of the pulmonary inflammation after the end of 

exposure, and thus to the long-term effects of the material in the lungs (Johnston et al., 

2000). Current analyses were limited to the 0–3 day post-exposure duration strata, which 

included the greatest number of experiments (about half of the data). Thus, of the 1557 

unique individual animals with PMN response across 25 studies available for this analysis, a 

subset of 844 animals across 22 studies was used for exploring potential groups of materials.

A limitation in these data is that the physicochemical and experimental information was 

inconsistently available across materials (Fig. S-1). The variables in this compiled dataset 

include material physicochemical properties, animal descriptors, time factors, and dose-

response metrics (Fig. S-1). Except for the ENPRA dataset (which included a table of select 

physicochemical properties), the physicochemical properties were generally obtained from 

the publications or from communication with researchers. Some particle properties –

solubility, surface charge, volume, and rigidity (of nanotubes) – were of interest a priori, 
based on studies in the literature showing associations with toxicological response, but were 

not reported in any of the studies included in this dataset. Rodent lung weights were not 

always available in specific studies and so average estimates were used (Section 2.2).

Although BMDs are the preferred effect levels in quantitative risk assessment (NAS, 2009; 

U.S. EPA, 2012), methods which compare the entire dose-response relationship may be 

better suited for identifying similar materials across a range of response endpoints. A BMD 

estimate represents the lower end of the dose-response relationship at a specified point on 

the curve. Yet, for a given point, an infinite number of curves could pass through it. This 

means that while two materials could have similar BMDs, the form of the dose-relationship 

could be quite different, both in the low dose and high dose regions. It is also clear that dose 

alone is insufficient to explain the variability in responses across various nanomaterials and 

experimental designs. Modeling methods that can account for covariates, complex 

relationships, and heterogeneous data variances are needed to better characterize the dose-

response relationships from multiple sources (Pei et al., 2017).

Standard practice in statistical model development is to split the data into training and 

testing sets. In this analysis, the original dataset (NIOSH, ENPRA, CIIT) assembled was 

used as the training set, and a subsequently obtained dataset (NanoGo) was used to as the 

testing set. An alternate method would be to randomly split the combined data (NIOSH, 

ENPRA, CIIT, and NanoGo) into new training and testing sets, and perhaps all possible 

combinations therein. Such methods can be considered in the future when a more 

comprehensive dataset become available for further model development and validation.
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In creating the material groups in this analysis, variability in the potency estimate was not 

taken into account. Rather, the best point estimate, the BMD, was used in the grouping. A 

method that can account for variability, thereby creating statistically different potency 

groups, may improve the predictive performance of a classification random forest model. 

The number of potency groups may also impact predictive performance. In this analysis, a 

large proportion of materials were classified into one group (Group 1), so using more groups 

for the classification (e.g., five potency groups instead of four) may contribute to more 

discernment of the hazard potency across materials. The rationale for the initial four potency 

groups was to evaluate their relationship with the four biological mode of action categories 

that have been proposed for ENMs (Section 2.4).

In evaluating the predictive accuracy of the random forest classification model, many 

algorithms would be expected to be accurate when classifying a new material into Group 1 

as 14/18 (~78%) of the training materials were in Group 1, thus one would have a 78% 

chance to correctly classify a new material by assigning it to Group 1. Creating more 

potency groups and having more test materials may be helpful in better measuring the 

predictive accuracy. Expanding the database to include more ENMs representing many 

different physicochemical properties would provide a more comprehensive database for use 

in moving beyond the proof-of-concept stage.

The grouping of materials could be sensitive to the biological response endpoint evaluated. 

The use of other pulmonary endpoints such as LDH or fibrosis severity score may reveal 

similar or different patterns among materials. Moreover, extending this framework to other 

endpoints and organ systems would also be useful to more fully evaluate the safety or health 

hazard potential of ENMs. This framework appears to work well when the BMR was 

background +4% PMNs in BALF, as 5/6 predictions were correct. However, the 

experimental data for the grouping was small–18 experiments for the added 4% PMN 

response, and only 12 experiments for the total 10% PMNs. Using the BMR of 10% total 

PMNs with this framework was not as successful due to the small number of similar 

materials in the training set (Tables S-3). Other effect levels such as no observed adverse 

effect levels (NOAELs) could also be used in this framework, which may be more readily 

available than BMD estimates that depend on having sufficient dose-response data.

4.3. Minimum data needed for grouping

Essential information in the database for the quantitative analyses in this framework includes 

the following: (1) sufficient number of dose groups to describe the dose-response 

relationship and estimate a benchmark dose for endpoint(s) related to human health outcome 

(as needed for dose-response modeling generally); and (2) a set of physicochemical 

properties that is sufficient to group particles with regard to biological response. The 

heterogeneity in experimental design adds variability in describing these relationships but is 

also reflective of the type of data currently available. Some of these experimental differences 

can be addressed to some extent in the analysis, for example, by normalizing the lung dose 

as the estimated deposited mass dose. However, more consistent experimental designs – 

method of exposure, post-exposure durations, and material descriptors would reduce the 

“noise” in the data.
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Key material descriptors that are needed in these analyses but are not always reported in 

toxicology studies include particle size distribution, density, and specific surface area 

measurements. Such data are needed to estimate other metrics of dose such as particle 

surface area or volume. Solubility was not reported quantitatively in any of these studies but 

is likely important in the toxicity and persistence of lung effects, as well as the potential for 

systemic effects. Material form (chemical composition) was a surrogate predictor for some 

of the unreported properties. Yet, within material type, other factors such as particle size, 

shape, and functionalization also influenced this hazard grouping based on pulmonary 

inflammation potency (Fig. 5). More complete information for these variables would 

facilitate further analyses.

4.4. Use of grouping results in risk assessment and OEL derivation

Benchmark dose modeling is the preferred method over NOAELs to estimate effect levels 

for quantitative risk assessment (NAS, 2009; U.S. EPA, 2012). The use of BMD estimates to 

group materials in this analysis provides a direct linkage to standard quantitative risk 

assessment methods (Fig. 1). Occupational exposure limits are typically mass-based 

airborne concentrations, and so these group-based BMD potency estimates based on mass 

lung dose can be readily extrapolated to estimate a human-equivalent concentration (HEC). 

The lower confidence limit estimates of the BMDs (i.e., BMDLs) from rodent studies (or 

eventually in vitro studies (Crump et al., 2010; Maier, 2011) could be used as the PODs in 

risk assessment and OEL derivation (Fig. 1). The BMDL representing a potency group can 

be estimated, for example, as the 5th percentile of the distribution of BMDLs for the 

individual experiments within that group. The 5th percentile BMDL can then be used as a 

health-protective estimate of a new material’s potency while being less sensitive to 

potentially unusually low minimum BMDL estimates (e.g., due to sparse and highly variable 

data).

Using standard dosimetry methods, the human-equivalent lung dose to the rodent BMDL 

estimates can be estimated by accounting for the differences in the factors that influence the 

particle deposition in the respiratory tract (U.S. EPA, 1994; Jarabek et al., 2005). Clearance 

and retention kinetics, including particle dissolution, would need to be taken into account in 

estimating the internal doses in rodents or humans with repeated exposures (Pauluhn, 2014; 

ICRP, 2015; Kuempel et al., 2015). The choice of dose metric should depend on the 

knowledge of the biological mechanisms.

Once the human-equivalent lung dose is estimated, the HEC (e.g., as an 8-hr time-weighted 

average airborne particle mass concentration) can be estimated based on the information on 

worker ventilation rates, exposure duration, and deposition efficiency of airborne particles in 

the respiratory tract (Kuempel et al., 2015). To estimate an OEL, uncertainty factors are 

typically applied to account for variability and uncertainty in the use of experimental animal 

data to estimate an HEC (Dankovic et al., 2015). In the current analysis, the acute 

inflammatory responses may be applicable to the derivation of acute exposure limits, e.g., 

Acute Exposure Guideline Levels, AEGLs (NAS, 2001). The group-based BMDL estimates, 

as described in this paper, would be used as PODs to derive OELs using standard risk 

assessment methods.
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4.5. Conclusions and next steps

Proof of concept has been demonstrated for a quantitative framework to estimate hazard 

potency for pulmonary inflammation by utilizing toxicology data in rodents and 

physicochemical properties of nanoscale and microscale particles. Findings were consistent 

with the previous literature on benchmark particles TiO2 and crystalline silica, and with 

potency of ENMs varying by particle size, shape, and chemical composition. Efforts are 

underway to compile a more comprehensive toxicology dataset for extension and further 

testing of this framework. More flexible models will be investigated to make better use of all 

data as it becomes available. Additional biological responses along the hypothesized adverse 

outcome pathways in the lungs and other organs will be examined. After further validation, 

this framework will be used to develop categorical OELs for ENMs without individual 

occupational exposure limits.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Framework for Predicting Hazard Potency Groups and Developing Occupational 
Exposure Limits (OELs) for Engineered Nanomaterials
In the current analysis, rodent data of pulmonary inflammation are used to estimate hazard 

potency groups for nanoscale and microscale particles; these groups are predicted for other 

nanomaterials based only on physicochemical properties. Ongoing research involves 

modeling additional in vivo and/or in vitro data. After further model validation, these group-

based potency estimates will be used as the points of departure (PODs) in risk assessment to 

estimate human-equivalent concentrations (HECs) and derive occupational exposure limits 

(OELs). Key: solid arrows: illustrated in current analysis; hatched arrows: ongoing and 
future work. Abbreviations: BMDL: Benchmark dose, 95% lower confidence limit estimate; 
NOAEL: No observed adverse effect level.
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Fig. 2. 
Schematic of the data analysis methods.
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Fig. 3. 
Important predictors of PMN proportion.
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Fig. 4. 
Process of model development and evaluation.
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Fig. 5. 
Visualization of potency estimates, variability and groups.
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Fig. 6. 
Physicochemical properties identified as important predictors of potency group.
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Table 3

Summary of potency estimates and materials by potency group in NIOSH/CIIT/ENPRA data.

Group BMDs
Min/Median/Max

BMDLs
Min/5th Percentile

Material types

1 2.1/25.8/119.2 0.22/0.23 Fe3O4 Pure

MWCNT Bare, Carboxylated, Long, Short

Silica Crystalline (2)b

TiO2 Long Nanobelt (2), Short Nanobelt (2)

ZnO Pure, 1% Fe3O4, 10% Fe3O4

2a 225.9/233.5/241.1 83.9/84.7 MWCNT Long, Short

3 440.3 365.3 TiO2 Ultrafine

4 2489.6 2366.1 TiO2 Fine†

a
C57BL/6-Apoetm1 mice.

b
Micro-sized materials.
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